An Overview of the Effects of Passive Solar Strategies on Thermal Comfort
DOI:
https://doi.org/10.38027/mediterranean-cities_vol4no1_2Keywords:
Sustainable Energy, Passive Solar Strategies, Future Initiatives, Interdisciplinary CollaborationsAbstract
The paper presents the impact of passive solar strategies on residential buildings concerning the thermal comfort factor. This study focuses on passive solar design elements like orientation, shading, and thermal mass to offer improved energy efficiency and occupant comfort. With a global natural gas crisis looming, interest in alternative heating and cooling is surging. With the growing concern of reducing the energy use by buildings while maintaining proper thermal comfort, both in cold and hot climates, the interest shifts to passive solar strategies. In this view, 547 publications have been analysed to reveal knowledge gaps and trends in the research. The bibliographic and thematic analysis techniques identified some approaches to passive solar design but no dominant method. Further, the study found under-researched areas within themes that appeared established. The authors have finally concluded with calls for further research and collaboration across institutions and nations to address these gaps and develop effective passive solar strategies. These findings contribute to sustainable architecture by pointing out the pros of applying passive solar strategies to reduce heating and cooling loads. In this respect, this was an original approach since it brought both quantitative and qualitative data together to measure thermal comfort. This is further underpinned by raising the need for energy-efficient building designs as measures toward mitigating climate change impacts.
Downloads
References
Ahmed, T., Kumar, P., & Mottet, L. (2021). The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138, 110669. https://doi.org/10.1016/j.rser.2020.110669 DOI: https://doi.org/10.1016/j.rser.2020.110669
Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., & Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 5(1), 1-11. https://doi.org/10.1016/j.ijsbe.2016.03.006 DOI: https://doi.org/10.1016/j.ijsbe.2016.03.006
Athienitis, A., Cellura, M., Chen, Y., Delisle, V., Bourdoukan, P., & Kapsis, K. (2015). Modeling and design of Net ZEBs as integrated energy systems. In Modeling, Design, and Optimization of Net-Zero Energy Buildings (pp. 9-74). Wiley. https://doi.org/10.1002/9781119137470.ch2 DOI: https://doi.org/10.1002/9783433604625.ch02
Bakirci, K., Ozyurt, O., Comakli, K., & Comakli, O. (2011). Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications. Renewable Energy, 36(5), 3224-3232. https://doi.org/10.1016/j.renene.2011.01.028 DOI: https://doi.org/10.1016/j.energy.2011.03.011
Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics. Annual Review of Information Science and Technology, 36(1), 1-53. https://doi.org/10.1002/aris.1440360102 DOI: https://doi.org/10.1002/aris.1440360102
Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development. Sage. ISBN: 9780761909613
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa
Cao, X., Dai, X., & Liu, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings, 128, 198-213. https://doi.org/10.1016/j.enbuild.2016.06.089 DOI: https://doi.org/10.1016/j.enbuild.2016.06.089
Chiras, D. D. (2002). The solar house: Passive heating and cooling. Chelsea Green Publishing. ISBN: 9781931498128
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Emmi, G., Zarrella, A., De Carli, M., & Galgaro, A. (2015). An analysis of solar assisted ground source heat pumps in cold climates. Energy Conversion and Management, 106, 660-675. https://doi.org/10.1016/j.enconman.2015.10.010 DOI: https://doi.org/10.1016/j.enconman.2015.10.016
Esen, M. (2000). Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Solar Energy, 69(1), 15-25. https://doi.org/10.1016/S0038-092X(00)00022-1 DOI: https://doi.org/10.1016/S0038-092X(00)00015-3
Fang, Z., Li, N., Li, B., Luo, G., & Huang, Y. (2014). The effect of building envelope insulation on cooling energy consumption in summer. Energy and Buildings, 77, 197-205. https://doi.org/10.1016/j.enbuild.2014.03.027 DOI: https://doi.org/10.1016/j.enbuild.2014.03.030
Ferrer-Rodríguez, J. P., Fernández, E. F., Fernández-Solas, Á., Almonacid, F., Talavera, D. L., & Pérez-Higueras, P. (2019). Optimization of an ultra-high CPV Cassegrain-Koehler unit with 2000× concentration ratio. AIP Conference Proceedings, 2149(1), 1-6. https://doi.org/10.1063/1.5124132 DOI: https://doi.org/10.1063/1.5124203
Freewan, A. A. Y. (2014). Impact of external shading devices on thermal and daylighting performance of offices in hot climate regions. Solar Energy, 102, 14-30. https://doi.org/10.1016/j.solener.2014.01.024 DOI: https://doi.org/10.1016/j.solener.2014.01.009
Givoni, B. (1992). Comfort, climate analysis and building design guidelines. Energy and Buildings, 18(1), 11-23. https://doi.org/10.1016/0378-7788(92)90047-K DOI: https://doi.org/10.1016/0378-7788(92)90047-K
Godin, B. (2006). On the origins of bibliometrics. Scientometrics, 68(1), 109-133. https://doi.org/10.1007/s11192-006-0086-0 DOI: https://doi.org/10.1007/s11192-006-0086-0
Gou, S., Nik, V. M., Scartezzini, J. L., Zhao, Q., & Li, Z. (2018). Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy and Buildings, 169, 484-506. https://doi.org/10.1016/j.enbuild.2018.03.062 DOI: https://doi.org/10.1016/j.enbuild.2017.09.095
Gross, G. (2021). A numerical study on the effects of natural ventilation on summer nighttime indoor temperatures in an urban area. Meteorologische Zeitschrift, 30(3), 227-236. https://doi.org/10.1127/metz/2021/1069 DOI: https://doi.org/10.1127/metz/2021/1066
Guarino, F., Athienitis, A., Cellura, M., & Bastien, D. (2017). PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates. Applied Energy, 185, 95-106. https://doi.org/10.1016/j.apenergy.2016.10.080 DOI: https://doi.org/10.1016/j.apenergy.2016.10.046
Guest, G., MacQueen, K. M., & Namey, E. E. (2011). Applied thematic analysis. SAGE Publications. ISBN: 978-1412971676 DOI: https://doi.org/10.4135/9781483384436
He, C., Hou, Y., Ding, L., & Li, P. (2021). Visualized literature review on sustainable building renovation. Journal of Building Engineering, 44, 102622. https://doi.org/10.1016/j.jobe.2021.102622 DOI: https://doi.org/10.1016/j.jobe.2021.102622
Hobbi, A., & Siddiqui, K. (2009). Optimal design of a forced circulation solar water heating system for a residential unit in a cold climate using TRNSYS. Solar Energy, 83(5), 700-714. https://doi.org/10.1016/j.solener.2008.10.018 DOI: https://doi.org/10.1016/j.solener.2008.10.018
Hou, C., Chen, C., Zhou, Y., Yang, Z., & Wei, S. (2021). Investigation of natural ventilation performance of large space circular coal storage dome. Building Simulation, 14, 1077-1093. https://doi.org/10.1007/s12273-021-0761-3 DOI: https://doi.org/10.1007/s12273-020-0700-8
Huang, C., Zou, Z., Li, M., Wang, X., Li, W., Huang, W., Yang, J., & Xiao, X. (2007). Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons. Building and Environment, 42(5), 1869-1877. https://doi.org/10.1016/j.buildenv.2006.02.021 DOI: https://doi.org/10.1016/j.buildenv.2006.02.016
Ismail, K. A. R., Salinas, C. T., & Henriquez, J. R. (2008). Comparison between PCM-filled glass windows and absorbing gas-filled windows. Energy and Buildings, 40(5), 710-719. https://doi.org/10.1016/j.enbuild.2007.05.002 DOI: https://doi.org/10.1016/j.enbuild.2007.05.005
Jokisalo, J., Kurnitski, J., Korpi, M., Kalamees, T., & Vinha, J. (2009). Building leakage, infiltration, and energy performance analyses for Finnish detached houses. Building and Environment, 44(2), 377-387. https://doi.org/10.1016/j.buildenv.2008.03.014 DOI: https://doi.org/10.1016/j.buildenv.2008.03.014
Kapsis, K., Dermardiros, V., & Athienitis, A. K. (2015). Daylight performance of perimeter office façades utilizing semi-transparent photovoltaic windows: A simulation study. Energy Procedia, 78, 334-339. https://doi.org/10.1016/j.egypro.2015.11.639 DOI: https://doi.org/10.1016/j.egypro.2015.11.657
Ketwong, W., Deethayat, T., & Kiatsiriroat, T. (2021). Performance enhancement of air conditioner in a hot climate by condenser cooling with cool air generated by direct evaporative cooling. Case Studies in Thermal Engineering, 26, 101127. DOI: https://doi.org/10.1016/j.csite.2021.101127
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Joy Nanlop Uwa, Parastoo Pourvahidi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This Journal is published through an Open Journal Systems as part of the Public Knowledge Project (PKP).
This Journal is licensed under a Creative Commons Attribution 4.0 International (CC BY)