Evidence on the Improvement of the Thermal Comfort Index and Habitability in Bioclimatic Spaces of the Mediterranean Region

Authors

DOI:

https://doi.org/10.38027/mediterranean-cities_vol5no1_1

Keywords:

Thermal Comfort Index (THI), Bioclimatic Architecture, Vegetated Architectural Systems, Mediterranean Climate Adaptation, Urban Heat Mitigation

Abstract

Climate change is a critical environmental challenge of this century, with particularly severe impacts projected for the Mediterranean region. In Spain, maximum temperatures are expected to increase by more than 2°C by the end of the century, with more frequent and longer-lasting heatwaves. Urban adaptation strategies such as bioclimatic architecture and integrating vegetation into built structures are effective tools to moderate microclimates and create climate shelters. However, a gap in empirical research connecting these tools in hot semi-arid Mediterranean contexts remains. This study addresses this gap by examining the impact of bioclimatic design on thermal comfort through fieldwork conducted at two distinct locations in the province of Málaga: Coín (rural) and Teatinos (urban). The research hypothesizes that spaces where the five fundamental pillars of bioclimatic design (urban planning, architecture, vegetation, landscaping, and materials) are well integrated tend to exhibit better thermal comfort. To test this, a Thermal Comfort Index (THI) was employed, adapted to the specific climatic conditions of the study areas, allowing a more accurate environmental performance assessment in each setting. Bioclimatic urban strategies, architectural configurations, vegetative elements, and material choices were analyzed in situ, revealing that the most thermally comfortable areas are aligned with a strong synergistic presence of all five pillars. The results support the notion that a thoughtful convergence of these principles mitigates heat stress and enhances spatial habitability in Mediterranean climates. This research contributes to current discussions on climate-resilient design by offering empirical evidence from two real-life case studies under urban and rural contexts.

Downloads

Download data is not yet available.

References

AdapteCCa (2023). AdapteCCa's climate change scenario viewer: interactive query and access to scenarios. Ministry for the Ecological Transition and the Demographic Challenge of Spain.

Agencia Estatal de Meteorología AEMET. (2024). Informe sobre el estado del clima de España 2024 https://doi.org/10.31978/666-25-002-1.2024 DOI: https://doi.org/10.31978/666-25-002-1.2024

Amblar, M. P., Casado Calle, M. J., Pastor Saavedra, M. A., Ramos Calzado, P., & Rodríguez Camino, E. (2017). Guide to regionalised climate change scenarios for Spain based on the results of the IPCC-AR5. Aragón Correa, J. A., Hurtado-Torres, N. E., Sharma, S., & García-Morales, V. J. 2018. Strategic proactivity and firm approach to the natural environment. Academy of Management Journal, 51(5), 971–985. NIPO: 014-17-010-8

Aram, F., Solgi, E., Baghaee, S., García, E. H., Mosavi, A., & Band, S. S. (2020). How parks provide thermal comfort perception in the metropolitan cores; a case study in Madrid Mediterranean climatic zone. Climate Risk Management, 30, 100245. https://doi.org/10.1016/j.crm.2020.100245 DOI: https://doi.org/10.1016/j.crm.2020.100245

Cano Giraldo, J. (2024). Architecture adapted to local climate cycles: Adaptive technologies, bioclimatic architecture, and coastal landscape. (Bachelor's thesis, School of Architecture and Design). DC: 2024-05-31T22:05:31Z

Castelán Lorenzo, M. (2022). Cooling and condensation capacity of atmospheric humidity of shade trees in coffee plantations in the Pluma Hidalgo region, Oaxaca. Chapingo Magazine Tropical Agriculture Series, 2(1), 33-43. https://doi.org/10.5154/r.rchsagt.2022.03.03 DOI: https://doi.org/10.5154/r.rchsat.2022.03.03

Espín Sánchez, D., & Olcina, J. (2025). Evolution of climate comfort on the southeast coast of the Iberian Peninsula and its relationship with climate change. Boletín de la Asociación de Geógrafos Españoles, (104). https://doi.org/10.21138/bage.3487 DOI: https://doi.org/10.21138/bage.3487

Ferrelli, F., & Piccolo, M. C. (2017). Climatic comfort perception and urban planning: Assessing bioclimatic conditions in urban open spaces. Urban Climate, 20, 168–181. https://doi.org/10.1016/j.uclim.2017.04.002 DOI: https://doi.org/10.1016/j.uclim.2017.04.002

García, F. F. (2003). Fundamentos físicos y métodos de evaluación del confort climático en los estudios de Bioclimatología humana. VI Reunion nacional de climatologia, Asociación de Geográfos Españoles Santiago de Compostela, 135-170. ISBN: 84-9750-142-X: DC: C-1423/2003.

Guerrero Serrano, P.M., Salvo Tierra, A.E., Cozano-Pérez, P., Macías, N., & Pereña-Ortiz, J.F. (2024). Conceptualization of Climate Comfort Areas and Their Typologies in the Mediterranean Region. DOI:10.13140/RG.2.2.24929.21601.

Hammer, O., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9 pp.

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. ISBN: 978-92-9169-143-2

IPCC (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 184 pp., doi: 10.59327/IPCC/AR6-9789291691647. DOI: https://doi.org/10.59327/IPCC/AR6-9789291691647

Jendritzky, G. (1991). Selected questions of topical interest in human bioclimatology. International Journal of Biometeorology, 35, 139-150. https://doi.org/10.1007/BF01049060 DOI: https://doi.org/10.1007/BF01049060

Junta de Andalucía. (2022). Andalusian Plan for the Prevention of the Effects of Excessive Temperatures on Health (2022). ISBN: 978-84-18778-48-3

Lee, F. S., Van Cura, J. E., & BeGole, E. (1998). A comparison of root surface temperatures using different obturation heat sources. Journal of endodontics, 24(9), 617-620. https://doi.org/10.1016/S0099-2399(98)80123-4 DOI: https://doi.org/10.1016/S0099-2399(98)80123-4

Montalbán Pozas, B., Lucas Bonilla, M., Lorenzo Gallardo, J. M., & Bote Alonso, I. (2025). Understanding the Impact of Thermal Performance on Thermal Comfort in Dwellings: A Large‐Sample Study With a Homogeneous User Profile. Indoor Air, 2025(1), 5533639. https://doi.org/10.1155/ina/5533639 DOI: https://doi.org/10.1155/ina/5533639

Morelli, T. L., Daly, C., Dobrowski, S. Z., Dulen, D. M., Ebersole, J. L., Jackson, S. T., ... & Beissinger, S. R. (2016). Managing climate change refugia for climate adaptation. PloS one, 11(8), e0159909. https://doi.org/10.1371/journal.pone.0159909 DOI: https://doi.org/10.1371/journal.pone.0159909

de Oliveira, L. M., Yanagi Junior, T., Ferreira, E., Carvalho, L. G. D., & Silva, M. P. D. (2006). Bioclimatic zoning of the southeastern region of Brazil for animal and human thermal comfort. Agricultural Engineering, 26, 823-831. https://doi.org/10.1590/S0100-69162006000300020 DOI: https://doi.org/10.1590/S0100-69162006000300020

Pesqueira Calvo, C., Fernández Nieto, M. A., García Carbonero, M., & Lara Ruiz, M. (2018). Plant architecture: material strategies. Ediciones Asimétricas. ISBN: 978-8494917813

Poveda Santos, J. J., Díaz Martínez, B., & Rodríguez García, E. (2021). Vegetation as a climate modulator in urban spaces. Journal of Urbanism and Sustainability, 15(2), 44–58. https://doi.org/10.14198/ruys.2021.15.02.03

Ramírez-Cuastuza, A. G., & Alarcón-Rodríguez, O. M. (2024). Evaluation of energy demand and thermal comfort in climate change scenarios for tropical housing: the case of San Andrés and Providencia, Colombia. AUS-Architecture/Urbanism/Sustainability, (35), 99-107. https://doi.org/10.4206/aus.2024.n35-11 DOI: https://doi.org/10.4206/aus.2024.n35-11

Rodríguez Camino, E. (2013). Climate Change 2013: Physical Basis. www.climatechange2013.org

Rodríguez Escandell, A. (2024). Evolution of bioclimatic strategies in Mediterranean buildings in the face of climate change. Bachelor's thesis, Universitat Politècnica de Catalunya, Spain. DC: 2024-07-23T09:34:54Z

Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57-61.https://doi.org/10.1080/00431672.1959.9926960 DOI: https://doi.org/10.1080/00431672.1959.9926960

Weller, R. N., Kimbrough, W. F., & Anderson, R. W. (1996). Root surface temperatures produced during post-space preparation. Journal of Endodontics, 22(6), 304-307. https://doi.org/10.1016/S0099-2399(96)80264-0 DOI: https://doi.org/10.1016/S0099-2399(96)80264-0

Downloads

Published

15.08.2025

How to Cite

Guerrero Serrano, P. M., & Salvo Tierra, Ángel E. (2025). Evidence on the Improvement of the Thermal Comfort Index and Habitability in Bioclimatic Spaces of the Mediterranean Region. Journal of Mediterranean Cities, 5(1), 1–16. https://doi.org/10.38027/mediterranean-cities_vol5no1_1

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.