Natural Solutions to Combat Urban Heat and Noise Islands: Investigation of Earth-Sheltered Buildings, Green Roofs and Urban Plantations
DOI:
https://doi.org/10.38027/mediterranean-cities_vol5no1_5Keywords:
Urban Heat Island; Urban Noise Island; Earth-Sheltered Building; Green Roof; Green Wall.Abstract
This review article presents a structured set of building and city-scale solutions that simultaneously mitigate the impacts of Urban Heat Island (UHI) and Urban Noise Island (UNI). 61 peer-reviewed articles published between 1981 and 2025, were examined in terms of their thermal and acoustic performances. Articles were selected by systematic keyword searches in databases with defined inclusion/exclusion criteria. In the article, building-scale strategies like green roofs, green walls, earth-sheltered buildings and blue-green infrastructures such as parks, forests, rain gardens, water bodies were considered together. According to quantitative data, green roofs and green walls can reduce surface temperatures by up to 26.9oC, indoor air temperatures by up to 11.3oC, and urban noise by 9.5 dB. When afforestation is added to these strategies, air temperatures in densely populated urban areas can be reduced by 5.48%. In addition to environmental benefits, nature-based solutions also have benefits related to energy efficiency, urban aesthetics, and public health. This study highlights research gaps and problems encountered in practice with a new dual-focus approach and offers suggestions for future studies. At the same time, it contributes to a framework that supports science-based, scalable urban planning approaches by bringing together thermal and acoustic benefits in a new synthesis.
Downloads
References
Aboelata, A. (2021). Assessment of green roof benefits on buildings’ energy-saving by cooling outdoor spaces in different urban densities in arid cities. Energy, 219, 119514. https://doi.org/10.1016/j.energy.2020.119514 DOI: https://doi.org/10.1016/j.energy.2020.119514
Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar energy, 70(3), 295-310. https://doi.org/10.1016/S0038-092X(00)0089-X DOI: https://doi.org/10.1016/S0038-092X(00)00089-X
Arghavani, S., Malakooti, H., & Bidokhti, A.-A. A. A. (2020). Numerical assessment of the urban green space scenarios on urban heat island and thermal comfort level in Tehran Metropolis. Journal of Cleaner Production, 261, 121183. https://doi.org/10.1016/j.jclepro.2020.121183 DOI: https://doi.org/10.1016/j.jclepro.2020.121183
Arulbalaji, P., Padmalal, D., & Maya, K. (2020). Impact of urbanization and land surface temperature changes in a coastal town in Kerala, India. Environmental Earth Sciences, 79, 1-18. https://doi.org/10.1007/s12665-020-09120-1 DOI: https://doi.org/10.1007/s12665-020-09120-1
Asadi, A., Arefi, H., & Fathipoor, H. (2020). Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: A case study in Austin, Texas. Advances in Space Research, 66(8), 1846-1862. https://doi.org/10.1016/j.asr.2020.06.039 DOI: https://doi.org/10.1016/j.asr.2020.06.039
Attal, E., & Dauchez, N. (2025). Acoustic performance of foliage based on green systems at normal incidence. Applied Acoustics, 234, 110591. https://doi.org/10.1016/j.apacoust.2025.110591 DOI: https://doi.org/10.1016/j.apacoust.2025.110591
Auger, N., Duplaix, M., Bilodeau-Bertrand, M., Lo, E., & Smargiassi, A. (2018). Environmental noise pollution and risk of preeclampsia. Environmental Pollution, 239, 599-606. https://doi.org/10.1016/j.envpol.2018.04.060 DOI: https://doi.org/10.1016/j.envpol.2018.04.060
Bakker, J., Lugten, M., & Tenpierik, M. (2023). Applying vertical greening systems to reduce traffic noise in outdoor environments: Overview of key design parameters and research methods. Building Acoustics, 30(3), 315-338. https://doi.org/10.1177/1351010X231171028 DOI: https://doi.org/10.1177/1351010X231171028
Balany, F., Ng, A. W., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green infrastructure as an urban heat island mitigation strategy—a review. Water, 12(12), 3577. https://doi.org/10.3390/w12123577 DOI: https://doi.org/10.3390/w12123577
Barriuso, F., & Urbano, B. (2021). Green roofs and walls design intended to mitigate climate change in urban areas across all continents. Sustainability, 13(4), 2245. https://doi.org/10.3390/su13042245 DOI: https://doi.org/10.3390/su13042245
Bellucci, P., Ciarallo, F., Garai, M., Peruzzi, L., & Praticò, F. (2023). On the sustainability of noise mitigation measures. Proc of the 10th Conven of Acoustic Ass, Turin, Italy. https://doi.org/10.61782/fa.2023.0026 DOI: https://doi.org/10.61782/fa.2023.0026
Benardos, A., Athanasiadis, I., & Katsoulakos, N. (2014). Modern earth sheltered constructions: A paradigm of green engineering. Tunnelling and Underground Space Technology, 41, 46-52. https://doi.org/10.1016/j.tust.2013.11.008 DOI: https://doi.org/10.1016/j.tust.2013.11.008
Carlucci, S., Charalambous, M., & Tzortzi, J. N. (2023). Monitoring and performance evaluation of a green wall in a semi-arid Mediterranean climate. Journal of Building Engineering, 77, 107421. https://doi.org/10.1016/j.jobe.2023.107421 DOI: https://doi.org/10.1016/j.jobe.2023.107421
Carmody, J., & Sterling, R. (1984). Design considerations for underground buildings. Underground Space, 8(5-6), 352-362.
Chang, C.-R., Li, M.-H., & Chang, S.-D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and urban planning, 80(4), 386-395. https://doi.org/10.1016/j.landurbplan.2006.09.005 DOI: https://doi.org/10.1016/j.landurbplan.2006.09.005
Daemei, A. B., Shafiee, E., Chitgar, A. A., & Asadi, S. (2021). Investigating the thermal performance of green wall: Experimental analysis, deep learning model, and simulation studies in a humid climate. Building and Environment, 205, 108201. https://doi.org/10.1016/j.buildenv.2021.108201 DOI: https://doi.org/10.1016/j.buildenv.2021.108201
De Cristo, E., Evangelisti, L., Barbaro, L., De Lieto Vollaro, R., & Asdrubali, F. (2025). A Systematic Review of Green Roofs’ Thermal and Energy Performance in the Mediterranean Region. Energies, 18(10), 2517. https://doi.org/10.3390/en18102517 DOI: https://doi.org/10.3390/en18102517
Douglas, O., & Murphy, E. (2016). Source-based subjective responses to sleep disturbance from transportation noise. Environment international, 92, 450-456. https://doi.org/10.1016/j.envint.2016.04.030 DOI: https://doi.org/10.1016/j.envint.2016.04.030
Dugord, P.-A., Lauf, S., Schuster, C., & Kleinschmit, B. (2014). Land use patterns, temperature distribution, and potential heat stress risk–the case study Berlin, Germany. Computers, Environment and Urban Systems, 48, 86-98. https://doi.org/10.1016/j.compenvurbsys.2014.07.005 DOI: https://doi.org/10.1016/j.compenvurbsys.2014.07.005
Feyisa, G. L., Dons, K., & Meilby, H. (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and urban planning, 123, 87-95. https://doi.org/10.1016/j.landurbplan.2013.12.008 DOI: https://doi.org/10.1016/j.landurbplan.2013.12.008
Gaudon, J. M., McTavish, M. J., Hamberg, J., Cray, H. A., & Murphy, S. D. (2022). Noise attenuation varies by interactions of land cover and season in an urban/peri-urban landscape. Urban Ecosystems, 1-8. https://doi.org/10.1007/s11252-021-01194-4 DOI: https://doi.org/10.1007/s11252-021-01194-4
Hassan, H., & El Kotory, A. M. (2019). A discussion of the application’s possibility of the earth-sheltered building type in Egypt: Implementation guidelines. ARCHive-SR, 3(1), 72-84. https://doi.org/ISSN (Print: 2537-0154, online: 2537-0162) DOI: https://doi.org/10.21625/archive.v3i1.432
He, B.-J. (2019). Towards the next generation of green building for urban heat island mitigation: Zero UHI impact building. Sustainable Cities and Society, 50, 101647. https://doi.org/10.1016/j.scs.2019.101647 DOI: https://doi.org/10.1016/j.scs.2019.101647
He, B.-J., Zhao, Z.-Q., Shen, L.-D., Wang, H.-B., & Li, L.-G. (2019). An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustainable Cities and Society, 44, 416-427. https://doi.org/10.1016/j.scs.2018.10.049 DOI: https://doi.org/10.1016/j.scs.2018.10.049
He, Y., Yu, H., Ozaki, A., & Dong, N. (2020). Thermal and energy performance of green roof and cool roof: A comparison study in Shanghai area. Journal of Cleaner Production, 267, 122205. https://doi.org/10.1016/j.jclepro.2020.122205 DOI: https://doi.org/10.1016/j.jclepro.2020.122205
Herath, H., Halwatura, R., & Jayasinghe, G. (2018). Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry & Urban Greening, 29, 212-222. https://doi.org/10.1016/j.ufug.2017.11.013 DOI: https://doi.org/10.1016/j.ufug.2017.11.013
Jandaghian, Z., & Colombo, A. (2024). The Role of Water Bodies in Climate Regulation: Insights from Recent Studies on Urban Heat Island Mitigation. Buildings, 14(9), 2945. https://doi.org/10.3390/buildings14092945 DOI: https://doi.org/10.3390/buildings14092945
Kachenchart, B., & Panprayun, G. (2024). Selection of tropical plants for an extensive green roof with abilities of thermal performance, energy conservation, and greenhouse gas mitigation. Building and Environment, 265, 112029. https://doi.org/10.1016/j.buildenv.2024.112029 DOI: https://doi.org/10.1016/j.buildenv.2024.112029
Kasprzyk, M., Szpakowski, W., Poznańska, E., Boogaard, F. C., Bobkowska, K., & Gajewska, M. (2022). Technical solutions and benefits of introducing rain gardens–Gdańsk case study. Science of the Total Environment, 835, 155487. https://doi.org/10.1016/j.scitotenv.2022.155487 DOI: https://doi.org/10.1016/j.scitotenv.2022.155487
Khaksar, A., Tabadkani, A., Shemirani, S. M. M., Hajirasouli, A., Banihashemi, S., & Attia, S. (2022). Thermal comfort analysis of earth-sheltered buildings: The case of meymand village, Iran. Frontiers of Architectural Research, 11(6), 1214-1238. https://doi.org/10.1016/j.foar.2022.04.008 DOI: https://doi.org/10.1016/j.foar.2022.04.008
Khare, V. R., Vajpai, A., & Gupta, D. (2021). A big picture of urban heat island mitigation strategies and recommendation for India. Urban Climate, 37, 100845. https://doi.org/10.1016/j.uclim.2021.100845 DOI: https://doi.org/10.1016/j.uclim.2021.100845
Kleerekoper, L., Van Esch, M., & Salcedo, T. B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30-38. https://doi.org/10.1016/j.resconrec.2011.06.004 DOI: https://doi.org/10.1016/j.resconrec.2011.06.004
Kumar, S., & Lee, H. P. (2019). The present and future role of acoustic metamaterials for architectural and urban noise mitigations. Acoustics, DOI: https://doi.org/10.3390/acoustics1030035
Li, D., Bou-Zeid, E., & Oppenheimer, M. (2014). The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environmental Research Letters, 9(5), 055002. https://doi.org/10.1088/1748-9326/9/5/055002 DOI: https://doi.org/10.1088/1748-9326/9/5/055002
Lu, J., Kong, F., Yin, H., Kang, J., Liu, H., Li, Z., Huang, H., Zhou, K., & Yang, S. (2025). Extensive green roofs for noise abatement: Combined acoustic effects of substrate and vegetation in a 3D environment. Building and Environment, 270, 112545. https://doi.org/10.1016/j.buildenv.2025.112545 DOI: https://doi.org/10.1016/j.buildenv.2025.112545
Lugten, M., Karacaoglu, M., White, K., Kang, J., & Steemers, K. (2018). Improving the soundscape quality of urban areas exposed to aircraft noise by adding moving water and vegetation. The Journal of the Acoustical Society of America, 144(5), 2906-2917. https://doi.org/10.1121/1.5079310 DOI: https://doi.org/10.1121/1.5079310
Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü., Sawut, M., & Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59-66. https://doi.org/10.1016/j.isprsjprs.2013.12.010 DOI: https://doi.org/10.1016/j.isprsjprs.2013.12.010
Manteghi, G., bin Limit, H., & Remaz, D. (2015). Water bodies an urban microclimate: A review. Modern Applied Science, 9(6), 1. https://doi.org/10.5539/mas.v9n6p1 DOI: https://doi.org/10.5539/mas.v9n6p1
Mihalakakou, G., Paravantis, J. A., Nikolaou, P., Menounou, P., Tsangrassoulis, A. E., Malefaki, S., Fotiadi, A., Papadaki, M., Giannakopoulos, E., & Romeos, A. (2024). Earth-sheltered buildings: A review of modeling, energy conservation, daylighting, and noise aspects. Journal of Cleaner Production, 143482. https://doi.org/10.1016/j.jclepro.2024.143482 DOI: https://doi.org/10.1016/j.jclepro.2024.143482
Mihalakakou, G., Souliotis, M., Papadaki, M., Menounou, P., Dimopoulos, P., Kolokotsa, D., Paravantis, J. A., Tsangrassoulis, A., Panaras, G., & Giannakopoulos, E. (2023). Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renewable and Sustainable Energy Reviews, 180, 113306. https://doi.org/10.1016/j.rser.2023.113306 DOI: https://doi.org/10.1016/j.rser.2023.113306
Mitchell, D., Heaviside, C., Vardoulakis, S., Huntingford, C., Masato, G., Guillod, B. P., Frumhoff, P., Bowery, A., Wallom, D., & Allen, M. (2016). Attributing human mortality during extreme heat waves to anthropogenic climate change. Environmental Research Letters, 11(7), 074006. https://doi.org/10.1088/1748-9326/11/7/074006 DOI: https://doi.org/10.1088/1748-9326/11/7/074006
Miyawaki, A. (2004). Restoration of living environment based on vegetation ecology: theory and practice. Ecological Research, 19, 83-90. https://doi.org/10.1111/j.1440-1703.2003.00606.x DOI: https://doi.org/10.1111/j.1440-1703.2003.00606.x
Miyawaki, A. (2008). A Philosophical Basis for Restoring Ecologically Functioning Urban Forests: Current Methods and Results. In Ecology, Planning, and Management of Urban Forests: International Perspectives (pp. 187-196). Springer. https://doi.org/10.007/978-0-387-71425-7_12 DOI: https://doi.org/10.1007/978-0-387-71425-7_12
Miyawaki, A. (2014). The Japanese and Chinju-no-mori tsunami-protecting forest after the Great East Japan Earthquake 2011. Phytocoenologia, 44(3-4), 235-244. https://doi.org/10.1127/0340-269X/2014/0044-0571 DOI: https://doi.org/10.1127/0340-269X/2014/0044-0571
Moudon, A. V. (2009). Real noise from the urban environment: how ambient community noise affects health and what can be done about it. American journal of preventive medicine, 37(2), 167-171. https://doi.org/10.1016/j.amepre.2009.03.019 DOI: https://doi.org/10.1016/j.amepre.2009.03.019
Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape ecology: the science of sound in the landscape. BioScience, 61(3), 203-216. https://doi.org/10.1525/bio.2011.61.3.6 DOI: https://doi.org/10.1525/bio.2011.61.3.6
Rahman, A. A., Zaid, S. M., & Shuhaimi, N. D. A. M. (2022). Effects of green roof in reducing surface temperature and addressing urban heat island in tropical climate of Malaysia. Journal of Design and Built Environment, 22(2), 1-20. https://doi.org/10.1016/j.applthermaleng.2022.119879 DOI: https://doi.org/10.22452/jdbe.vol22no2.1
Sahnoune, S., Benhassine, N., Bourbia, F., & Hadbaoui, H. (2021). Quantifying the effect of green-roof and urban green infrastructure ratio on urban heat island mitigation-semi-arid climate. Journal of Fundamental and Applied Sciences, 13(1), 199-224. https://doi.org/10.4314/ifas.v13i1.12 DOI: https://doi.org/10.4314/jfas.v13i1.12
Santamouris, M., Synnefa, A., Kolokotsa, D., Dimitriou, V., & Apostolakis, K. (2008). Passive cooling of the built environment–use of innovative reflective materials to fight heat islands and decrease cooling needs. International Journal of Low-Carbon Technologies, 3(2), 71-82. https://doi.org/10.1093/İjlct/3.2.71 DOI: https://doi.org/10.1093/ijlct/3.2.71
Shushunova, N., Korol, E., Luzay, E., Shafieva, D., & Bevilacqua, P. (2022). Ensuring the Safety of Buildings by Reducing the Noise Impact through the Use of Green Wall Systems. Energies, 15(21), 8097. https://doi.org/10.3390/en15218097 DOI: https://doi.org/10.3390/en15218097
Sterling, R., Carmody, J., & Elnicky, G. (1981). Earth Sheltered Community Design. DOI: https://doi.org/10.1016/B978-1-4832-8421-7.50102-2
Sun, Z., Li, Z., & Zhong, J. (2022). Analysis of the impact of landscape patterns on urban heat islands: A case study of Chengdu, China. International Journal of Environmental Research and Public Health, 19(20), 13297. https://doi.org/10.3390/ijerph192013297 DOI: https://doi.org/10.3390/ijerph192013297
Synnefa, A., Santamouris, M., & Akbari, H. (2007). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and buildings, 39(11), 1167-1174. https://doi.org/10.1016/j.enbuild.2007.01.004 DOI: https://doi.org/10.1016/j.enbuild.2007.01.004
Tadeu, A., Carrilho, J., Cortês, A., Ferreira, F., & Almeida, J. (2024). Acoustic absorption, scattering, and diffusion provided by green roof systems. Building and Environment, 262, 111778. https://doi.org/10.1016/j.buildenv.2024.111778 DOI: https://doi.org/10.1016/j.buildenv.2024.111778
Wang, X., Li, H., & Sodoudi, S. (2022). The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment, 217, 109082. https://doi.org/10.1016/j.buildenv.2022.109082 DOI: https://doi.org/10.1016/j.buildenv.2022.109082
Yuan, M., Yin, C., Sun, Y., & Chen, W. (2019). Examining the associations between urban built environment and noise pollution in high-density high-rise urban areas: A case study in Wuhan, China. Sustainable Cities and Society, 50, 101678. https://doi.org/10.1016/j.scs.2019.101678 DOI: https://doi.org/10.1016/j.scs.2019.101678
Zhao, Z.-Q., He, B.-J., Li, L.-G., Wang, H.-B., & Darko, A. (2017). Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: Case study of Shenyang, China. Energy and buildings, 155, 282-295. https://doi.org/10.1016/j.enbuild.2017.09.046 DOI: https://doi.org/10.1016/j.enbuild.2017.09.046
Zhong, T., Zhang, N., & Lv, M. (2021). A numerical study of the urban green roof and cool roof strategies’ effects on boundary layer meteorology and ozone air quality in a megacity. Atmospheric Environment, 264, 118702. https://doi.org/10.1016/j.atmosenv.2021.118702 DOI: https://doi.org/10.1016/j.atmosenv.2021.118702
Zinci, M., & Santamouris, M. (2019). Introducing urban overheating-progress on mitigation science and engineering applications. Climate, 7 (1), 15. https://doi.org/10.3390/cli7010015 DOI: https://doi.org/10.3390/cli7010015
Zinzi, M., & Agnoli, S. (2012). Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy and Buildings, 55, 66-76. DOI: https://doi.org/10.1016/j.enbuild.2011.09.024
Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences, 116(15), 7575-7580. https://doi.org/101073/pnas.1817561116 DOI: https://doi.org/10.1073/pnas.1817561116
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Meltem Sarul, Filiz Bal Koçyiğit, Çağrı Yılmaz

This work is licensed under a Creative Commons Attribution 4.0 International License.
This Journal is published through an Open Journal Systems as part of the Public Knowledge Project (PKP).
This Journal is licensed under a Creative Commons Attribution 4.0 International (CC BY)